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Abstract. Regulated alternative splice site selection emerges as one of the most
important mechanisms to control the expression of genetic information in humans.
It is therefore not surprising that a growing number of diseases are either associated
with or caused by changes in alternative splicing. These diseases can be caused by
mutation in regulatory sequences of the pre-mRNA or by changes in the concen-
tration of trans-acting factors. The pathological expression of mRNA isoforms can
be treated by transferring nucleic acids derivatives into cells that interfere with
sequence elements on the pre-mRNA, which results in the desired splice site
selection. Recently, a growing number of low molecular weight drugs have been
discovered that influence splice site selection in vivo. These findings prove the
principle that diseases caused by missplicing events could eventually be cured.

1
Importance of Alternative Splicing for Gene Regulation

The sequencing of various eukaryotic genomes has demonstrated that a
surprisingly small number of genes generate a complex proteome. For
example, the estimated 20,000–25,000 human protein-coding genes give rise
to 100,000–150,000 mRNA variants as estimated by EST comparison.
Array analysis shows that 74% of all human genes are alternatively spliced
(Johnson et al. 2003) and a detailed array-based analysis of chromosome
22 and 21 suggests that every protein-coding gene could undergo alterna-
tive splicing (Kampa et al. 2004). Extreme examples illustrate the potential
of alternative splicing: the human neurexin 3 gene could form 1,728 tran-
scripts (Missler and Sudhof 1998) and the Drosophila DSCAM gene could
give rise to 38,016 isoforms, which is larger than the number of genes in
Drosophila (Celotto and Graveley 2001).

Unlike promoter activity that predominantly regulates the abundance of
transcripts, alternative splicing influences the structure of the mRNAs and
their encoded proteins. As a result, it influences binding properties, intracellu-
lar localization, enzymatic activity, protein stability, and post-translational
modification of numerous gene products (Stamm et al. 2005). The magnitude
of the changes evoked by alternative splicing are diverse and range from
a complete loss of function to very subtle, hard to detect effects (Stamm et al.,
2005). Alternative splicing can indirectly regulate transcript abundance.
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About 25–35% of alternative exons introduce frameshifts or stop codons into
the pre-mRNA (Stamm et al. 2000; Lewis et al. 2003). Since approximately
75% of these exons are predicted to be subject to nonsense-mediated decay, an
estimated 18–25% of transcripts will be switched off by stop codons caused
by alternative splicing and nonsense mediated decay (Lewis et al. 2003).
Finally, several proteins that regulate splice-site usage shuttle between nucleus
and cytosol where they regulate translation (Sanford et al. 2004).

1.1
Splice Sites are Selected Through Combinatorial Control

Proper splice site selection is achieved by binding of protein and protein:
RNA complexes (trans-factors) to weakly defined sequence elements 
(cis-factors) on the pre-mRNA (Fig. 1A). Binding of the trans-factors
occurs cotranscriptionally and prevents the pre-mRNA from forming
RNA:DNA hybrids with the genomic DNA. RNP complexes forming
around exons promote binding of U2AF and U1 snRNP at the 3′ and 5′
splice sites respectively, which marks the sequences to be included in the
mRNA. Sequences located in exons or the flanking introns can act as
splicing silencers or enhancers. All cis-elements can only be described
as consensus sequences that are loosely followed (Black 2003) and in
general, they bind only weakly to trans-acting factors. The action of the cis-
elements depends on other surrounding elements, and due to this sequence
context the same sequence can either promote or inhibit exon inclusion
(Carstens et al. 1998). In order to achieve the high fidelity of splice site
selection, multiple weak interactions are combined (Maniatis and Reed
2002; Maniatis and Tasic 2002) and as a result of this combinatorial con-
trol, splice site selection is influenced by multiple factors (Smith and
Valcarcel 2000). This combinatorial control is mirrored in the complex
composition of splicing regulatory complexes that often combine overlap-
ping enhancing and silencing parts that collaborate to regulate exon usage
(Singh et al. 2004b; Pagani et al. 2003b).

The formation of a specific protein:RNA complex from several intrin-
sically weak interactions has several advantages: (1) it allows a high
sequence flexibility of exonic regulatory sequences that puts no con-
straints on coding requirements; (2) the protein interaction can be influ-
enced by small changes in the concentration of regulatory proteins, which
allows the alternative usage of exons depending on a tissue and/or devel-
opmental-specific concentration of regulatory factors; (3) phosphoryla-
tion of regulatory factors that alter protein:protein-interactions can
influence splice site selection; (4) the regulatory proteins can be exchanged
with other proteins after the splicing reaction, allowing a dynamic
processing of the RNA.
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The usage of alternative exons changes during development or cell
differentiation both in vivo and in cell cultures. Furthermore, numerous
external stimuli have been identified that change alternative splicing
patterns. In most cases, these changes are reversible, indicating that they are
part of a normal physiological response (Stamm 2002).
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Fig. 1A, B. Change of splice site selection during disease. A: Formation of RNP
complexes to recognize splice sites. The exon is shown as a gray square, the intron
as lines. The formation of a complex between SR proteins and hnRNPs on two
exonic enhancers (small boxes in the exons) is shown. This complex stabilizes
the binding of U2AF to the 3′ splice site and of U1snRNP to the 5′ splice site of
the exon (dashed lines show RNA:RNA binding). Multiple intrinsically weak
protein:protein (red ) interactions allow the formation of a specific complex.
B: Mechanisms to change exon recognition. The formation of RNP complexes
around exons can be disturbed by different ways. 1: Mutations in regulatory
sequences can abolish binding of regulatory factors. 2: The concentration of regu-
latory factors can be altered, either by sequestration in different compartments or
through a change of their expression level. 3: Phosphorylation events change the
interaction between regulatory proteins, which interferes with exon recognition
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2
Human Diseases that are Caused by Mutation in
Splicing Signals

Since alternative splicing plays such an important role in gene expression,
it is not surprising that an increasing number of diseases are caused by
abnormal splicing patterns (Stoilov et al. 2002; Faustino and Cooper 2003;
Garcia-Blanco et al. 2004; Fig. 1B). There is a positive correlation between
the number of splice sites and the likelihood of a gene causing a disease,
suggesting that many mutations that cause diseases may actually disrupt
the splicing pattern of a gene (Lopez-Bigas et al. 2005). The disease-causing
mechanism can be subdivided into changes in cis- and trans-factors.
Changes in cis-factors are caused by mutations in splice sites, silencer and
enhancer sequences, and through generation of novel binding sites in triplet
repeat extensions. Alterations in trans-acting factors are frequently
observed in tumor development, where the concentration and ratio of indi-
vidual trans-acting factors change. Mutations can be seen as new sources
for alternative splicing regulation. For example, the alternative splicing pat-
terns of different histocompatibility leukocyte antigens (HLA) are regu-
lated by allele-specific mutations in the branchpoint sequences. Since the
variability of HLAs are the basis of the adaptive immune response, these
mutations strengthen the immunity by enlarging the number of potential
HLA molecules (Kralovicova et al. 2004).

2.1
Mutation of Cis-acting Elements

Mutations of cis-acting elements can be classified according to their loca-
tion and action. Type I mutations occur in the splice sites and destroy
exon usage, type II mutations create novel splice sites that cause inclusion
of a novel exon, type III and IV mutations occur in exons or introns,
respectively, and affect exon usage. Type I and II mutations are the sim-
plest mutation to be recognized. About 10% of the mutations stored in
the Human Gene mutation database affect splice sites. They have been
compiled in that (Stenson et al. 2003) and in specialized databases (Nakai
and Sakamoto 1994).

Although bioinformatics resources such as the ESE finder (Cartegni
et al. 2003), or the RNA workbench (Thanaraj et al. 2004) help to predict
type III and IV mutations, the theoretical models often do not fit the exper-
imental findings (Pagani et al. 2003a). However, the increase of genotype
screening in human diseases has identified numerous exonic and intronic
variations. Their association with a disease phenotype is often unclear since
apparently benign polymorphism, such as codon third position variations
or conservative amino acid replacement, are difficult to assess. A list of
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well-studied mutations in splicing regulatory elements is given in Table 1
and is maintained at the alternative splicing database web site
(http://www.ebi.ac.uk/asd/).

2.2
Examples of Diseases

As examples, we discuss two well-studied pathologies: cystic fibrosis and
spinal muscular atrophy. Cystic fibrosis is a recessive disease caused by loss
of function of the cystic fibrosis transmembrane conductance regulator
(CFTR) gene occurring with an incidence of 1:3,500. The CFTR gene
encodes a cAMP-regulated chloride channel that controls the hydration of
mucus. Currently, 1,388 mutations of CFTR have been described, 185 of
which are splicing mutations. Twenty of these splicing mutations are
located in exons, the rest in introns (http://www.genet.sickkids.on.ca/cftr/),
which roughly reflects the exon/intron composition of the gene. Mutations
changing exons’ 9 and 12 usage have been studied in detail. Both exons are
alternatively spliced in healthy individuals and the ratio of exon inclusion
varies between individuals (Hull et al. 1994), which could be attributed to
variable concentrations of trans-acting factors between them. Complete
skipping of these exons is caused by several splice-site mutations. These
mutations result in the classical clinical picture of cystic fibrosis that shows
chronic respiratory and digestive problems, and affects the lower respira-
tory tracts, pancreas, biliary system, male genitalia, intestine, and sweat
glands. In contrast, type III and IV mutations change the ratio of exon
inclusion and cause non-classical forms of cystic fibrosis that affect only a
subgroup of organs or appear later. A detailed analysis of the mutations
showed that they are part of a larger regulatory element, the composite
exonic regulatory element of splicing (CERES). CERES contains multiple
overlapping silencing and enhancing elements that work only in the partic-
ular CERES context and cannot be moved into heterologous sequence con-
texts. Several neutral polymorphisms in CERES can influence splicing and
therefore contribute to the disease. Finally, the isoform ratio evoked by
CERES mutation was depending on the cell type, which would explain why
the mutations affect only a few organs (Pagani et al., 2003a; Pagani et al.,
2003b). Thus, mutations affecting alternative splicing contribute to a very
heterogeneous clinical phenotype that makes genotype–phenotype correla-
tion difficult.

Spinal muscular atrophy is a neurodegenerative disorder with progres-
sive paralysis caused by the loss of alpha motor neurons in the spinal cord.
The incidence is 1:6,000 for live births and the carrier frequency is 1 in 40,
making SMA the second most common autosomal recessive disorder and
the most frequent genetic cause of infantile death. SMA is caused by the
loss of the SMN1 gene that encodes the SMN protein, which regulates
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snRNP assembly. Humans posses an almost identical gene, SMN2 that
was generated through a recent duplication. Although both genes are
almost identical in sequence, due to a translationally silent C>T change at
position 6 in exon 7, they have different splicing patterns and exon 7 is pre-
dominantly excluded in SMN2. This exon-skipping event generates a trun-
cated, less stable and probably nonfunctional protein. Therefore, SMN2
cannot compensate the loss of SMN1. The SMN protein functions in the
assembly of snRNPs. The SMN protein is absent from all cells in SMA
patients. However, this protein deficiency becomes only apparent in motor
neurons that eventually die. The loss of the motor neurons causes SMA.
The disease can manifest in four phenotypes (type I to IV) that differ in
onset and severity. The phenotypes correlate roughly with the number of
SMN2 copies in the genome, most likely because more SMN2 copies
produce more SMN protein. Since stimulation of SMN2 exon 7 usage
would increase SMN protein levels and potentially cure the disease,
work has concentrated on understanding the regulation of exon 7. As for
CFTR exon 9 and 12, multiple factors determine the regulation, including
a suboptimal polypyrimidine tract (Singh et al. 2004c), a central tra2-
beta1-dependent enhancer (Hofmann et al. 2000) and the sequence around
the C>T change at position 6 that can either bind to SF2/ASF or
hnRNPA1 (Cartegni and Krainer 2002; Kashima and Manley 2003).
Recent large scale mutagenesis studies indicate that again a composite
regulatory exonic element termed EXINCT (extended inhibitory context)
is responsible for the regulation of exon 7 inclusion (Singh et al. 2004a;
Singh et al. 2004b).

These two examples illustrate some of the general principles of diseases
caused by misregulated splicing: mutations in splicing regulatory
sequences can be hard to detect and translationally silent point mutations
or intronic mutations can have drastic effects. The effect of the identical
mutation on splice site selection can vary between cell types, which can
cause specific, sometimes atypical, phenotypes. Identical mutations show
also different penetrance when different individuals are analyzed, suggest-
ing that alternative splicing could be a genetic modifier (Nissim-Rafinia
and Kerem 2002).

3
Changes of Trans Factors Associated with Diseases

Knock-out experiments indicate that the complete loss of splicing
factors NOVA-1, SRp20, SC35, and ASF/SF2 causes early embryonic
lethality (Jensen et al. 2000; Jumaa et al. 1999; Wang et al. 2001; Xu et al.
2005). Up to now, knock-outs of splicing regulatory factors are largely
absent in libraries of ES cells where one allele was silenced through gene
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trapping. This indicates that the proper concentration of regulatory
factors is necessary for cell survival. However, the loss of splicing factors
in differentiated cells can be tolerated and leads to specific phenotypes
(Xu et al. 2005).

Mutations in proteins implicated in splicing have been observed in retini-
tis pigmentosa, a progressive loss of photoreceptor cells during childhood,
where PRP31 is mutated (Vithana et al. 2001) and forms of azospermia,
where RBMY has been deleted (Venables et al. 2000).

Changes in the concentration or localization of splicing factors are
frequently observed in tumorigenesis. For example, the concentration of
SC35, ASF/SF2, and tra2-beta1 are altered in ovarian cancer (Fischer et al.
2004). An array-based study of changes in Hodgkin’s lymphoma revealed
2–5 fold changes in seven general splicing factors as well as the ectopic
expression of the neuron-specific splicing factor NOVA-1 and NOVA-2
(Relogio et al. 2005). In addition, numerous splicing events were altered,
but it is not possible to explain how these changes are related to alterations
of trans-acting factors.

4
Human Diseases Associated with Aberrant Splice Site
Selection Without Obvious Mutations

A number of diseases have been described that are associated with a change
in alternative splicing patterns in the absence of mutations or alterations in
trans-acting factors. For example, in schizophrenia, the alternative splicing
patterns of the gamma2 subunit of gamma amino butyrate type A receptor
(Huntsman et al. 1998), the N-methyl-D-aspartate (NMDA) R1 receptor,
and the neuronal cell adhesion molecule (Vawter et al. 2000) were altered.
Recent results show that the alternative splicing of tau exon 10 is signifi-
cantly altered in sporadic Alzheimer’s disease (Umeda et al. 2004; Glatz
et al. 2006). Changes of alternative splicing patterns have been frequently
reported to be associated with cancer development, e.g., Wilms’ tumor,
breast cancer, melanoma, and prostate cancer (Table 2). Furthermore, EST
analysis demonstrates widespread changes of alternative splicing patterns in
cancer cells (Xu and Lee 2003) when compared with normal cells. However,
these changes have to be interpreted with caution, since they are not always
reproducible by RT-PCR analysis (Gupta et al. 2004). Strikingly, in the
majority of cancer tissues, mutations in the genes giving rise to altered
mRNA isoforms have not been observed. It is therefore likely that these
changes are caused by altered concentration of regulatory factors, or
through changes in their subcellular localization or phosphorylation state
(Rafalska et al. 2004; Fig. 1B).
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5
Treatment of Diseases Caused by Missplicing

5.1
Gene Transfer Methods

Type I and II mutations either destroy splice sites or activate cryptic splice
sites. Antisense nucleic acids can suppress point mutations and promote the
formation of the normal gene products. Special chemistries were devised to
prevent RNAseH-mediated cleavage of the RNA and to lower toxicity
(Sazani and Kole 2003). Oligonucleotides have been used to target cryptic
splice sites that are activated in beta thalassemias (Lacerra et al. 2000), to
suppress exon usage in Duchenne muscular dystrophy (Mann et al. 2001)
and to block HIV replication (Liu et al. 2004).

The antisense approach was further developed in ESSENCE (exon-
specific splicing enhancement by small chimeric effectors). ESSENCE uses
bifunctional reagents that contain a peptide effector domain and an anti-
sense-targeting domain. The effector domains of these protein–nucleic acids
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Table 2. Human diseases associated with aberrant splice-site selection without
obvious mutations

Gene Disease Reference

Estrogen receptor Breast-cancer Pfeffer et al. (1993)

Gris1: Graffi Integration leukemia Denicourt et al. (2003)
Site 1

BAFF cancer Gavin et al. (2003)

MDM 2 cancer Steinman et al. (2004);
Lukas et al. (2001)

ADAR inflammation Yang et al. (2003)

HOX2.2 cancer Shen et al. (1991)

WT1 cancer Baudry et al. (2000)

Bin1 cancer Ge et al. (2000)

FGFR-2 cancer Kwabi-Addo et al.
(2001)

EAAT2 Sporadic amyotrophic Lin et al. (1998)
lateral sclerosis

NOS Sporadic amyotrophic Catania et al. (2001)
lateral sclerosis

Ich-1 ischemia Daoud et al. (2002)
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were arginine–serine (RS) repeats that mimic the effect of SR proteins
(Cartegni and Krainer 2003).

Related to ESSENCE is the use of bifunctional oligonucleotides in TOES
(targeted oligonucleotide enhancer of splicing), where a part of the oligonu-
cleotide binds to an SR protein, which promotes exon inclusion (Skordis
et al. 2003). Several RNA based approaches have been tested in cell culture.
They include the use of RNAi to suppress unwanted isoforms (Celotto and
Graveley 2002), spliceosome-mediated RNA trans-splicing (SmaRT) to
correct factor VIII deficiency in a mouse model (Chao et al. 2003) and
ribozymes that use trans-splicing to replace defective p53, beta-globin
mRNA and a chloride channel in cell culture (Lan et al. 1998; Watanabe and
Sullenger 2000; Rogers et al. 2002). Finally, antisense oligonucleotides have
been used to modify U7 snRNA, which results in the nuclear accumulation
of the oligonucleotide sequences in stable U7snRNP complexes
(Asparuhova et al. 2004) that interact with the mutant target gene.

5.2
Low Molecular Weight Drugs

It is well known that small molecules can interact with RNA, and this principle
is used by several RNA-binding antibiotics, such as gentamicin, chlorampheni-
col, and tetracycline (Xavier et al. 2000). Therefore, several chemical screens
were performed to identify small-molecular-weight molecules that interfere with
splice site selection. It was found that (−)-epigallocatechin gallate (EGCG), a
polyphenol and component of green tea (Anderson et al. 2003), as well as
kinetin and the related benzyladenine, a plant hormone (Slaugenhaupt et al.
2004), promotes correct splice-site usage in the IKAP gene, involved in familial
dysautonomia. Histone deacetylase inhibitors, such as sodium butyrate and
valproic acid, have been used to increase the correct level of SMN2 splicing
(Chang et al. 2001; Brichta et al. 2003). SMN2 splicing was also influenced by
the phosphatase inhibitor sodium vanadate (Zhang et al. 2001), the cytotoxic
anthracycline antibiotic aclarubicin (Andreassi et al. 2001) and the nonsteroidal
anti-inflammatory drug indoprofen (Lunn et al. 2004). A major disadvantage of
most of the inhibitors is their low specificity. However, surprisingly, indole deriv-
atives were found to act on specific SR proteins that regulate specific ESE
sequences (Soret et al. 2005). Since these substances block HIV replication by
interfering with early viral splicing events, they open the intriguing possibility of
a specific pharmacological treatment for splicing disorders.

5.3
Diagnostics

Up to now, the majority of studies analyzing splice site selection were done by
RT-PCR (Stamm et al. 2000). Recently, microarray formats have successfully
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been used to detect changes in splice site selection associated with diseases
(Fehlbaum et al. 2005; Relogio et al. 2005). These microarrays use several
oligonucleotides located within the exon and on the exon–exon junctions to
infer the presence and connections of alternative exons. The arrays detect the
usage of a single exon, and it is currently not possible to infer the composition
of complete mRNAs using microarrays. One important finding of microarray
analysis is that diseases can be associated with a large number of small changes
in alternative splice site selection, rather than with a few large changes. It will
therefore be necessary to analyze data obtained with exon-specific microarrays
with different software tools that use gene ontologies to detect coordinated
small changes in groups of exons (Ben-Shaul et al. 2005).

6
Conclusions

Misregulated alternative splicing emerges as a new cause for human dis-
eases. Recent progress shows that misregulation of alternative splicing can
be reversed. Most of the treatment paradigms are in the experimental stage.
However, the growing list of drugs interfering with splice-site selection
promises that some treatment options will be moved to the clinic soon.
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