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ABSTRACT

The serotonin receptor 2C plays a central role in
mood and appetite control. It undergoes pre-
mRNA editing as well as alternative splicing. The
RNA editing suggests that the pre-mRNA forms a
stable secondary structure in vivo. To identify sub-
stances that promote alternative exons inclusion,
we set up a high-throughput screen and identified
pyrvinium pamoate as a drug-promoting exon inclu-
sion without editing. Circular dichroism spectros-
copy indicates that pyrvinium pamoate binds
directly to the pre-mRNA and changes its structure.
SHAPE (selective 20-hydroxyl acylation analysed by
primer extension) assays show that part of the
regulated 50-splice site forms intramolecular base
pairs that are removed by this structural change,
which likely allows splice site recognition and exon
inclusion. Genome-wide analyses show that
pyrvinium pamoate regulates >300 alternative
exons that form secondary structures enriched in
A–U base pairs. Our data demonstrate that alterna-
tive splicing of structured pre-mRNAs can be
regulated by small molecules that directly bind to
the RNA, which is reminiscent to an RNA riboswitch.

INTRODUCTION

Obesity is a major and growing health problem. Mouse
studies and the development of weight-loss drugs

like fenfluramine–phentermine (fen–phen) validated the
serotonin receptor 2C (HTR2c) protein as an anti-obesity
drug target (1). HTR2c is a G-protein–coupled receptor
located on the X chromosome. As shown in Figure 1, exon
Vb is alternatively spliced. Only when this exon is
included, a functional receptor can be made, as skipping
of the exon generates a frame shift, which likely generates
a mRNA, which is not translated into protein and is likely
degraded.
The receptor pre-mRNA undergoes A! I editing in at

least five editing sites located in exon Vb, together with
alternative splicing generating at least 25 isoforms.
The inclusion of exon Vb can be achieved in two known

ways: (i) changing one or more of five adenosines in exon
Vb to inosine using the deaminases ADAR (adenosine
deaminase acting on RNA) (2); or (ii) by promoting
exon Vb inclusion via processed small nucleolar RNAs
(psnoRNAs) (3,4) without any change in mRNA
sequence. The inosines generated by ADAR are inter-
preted as guanosines by the ribosome. Therefore, the
edited versions of the HTR2c have a different protein
sequence. This difference in composition has a functional
effect: the edited versions of the receptor are less active
than the non-edited versions, as the coupling efficiency
towards the G-protein is reduced (5). Mice lacking
HTR2c expression are hyperphagic and obese (6,7).
Although re-introducing the non-edited receptor reverts
this phenotype, introduction of the fully edited HTR2c
does not revert the hyperphagic behaviour (8,9), suggest-
ing that expression of the non-edited most active receptor
is important to prevent hyperphagia.
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The Prader–Willi syndrome is the most frequent genetic
cause for obesity in humans. Genetic data indicate that
the loss of regulatory RNAs generated from the HBII-52
and -85 clusters cause the disease (10,11). The HBII-52
and -85 loci encode RNAs that structurally resemble
snoRNAs, but the protein complexes they form are bio-
chemically distinct from canonical small nucleolar
ribonucleoprotein (snoRNPs) (3,12). Furthermore, the
HBII-52 and -85 loci express shorter RNAs, termed
psnoRNAs (13). HBII-52–derived psnoRNAs change al-
ternative splicing of the serotonin receptor 2C. This
promotes the formation of an mRNA encoding a
protein isoform that has the strongest response to sero-
tonin (3,14). Collectively, these data show that the HTR2c
pre-mRNA processing controls appetite in vertebrates.
The use of RNA-binding antibiotics, such as

gentamycin, chloramphenicol and tetracycline, demon-
strates that drugs can target RNA molecules (15–17).
The target for these antibiotics is bacterial ribosomal
RNA that is highly structured. Most pre-mRNAs have
short rapidly changing secondary structures, if they have
structures at all. In contrast, the HTR2c pre-mRNA is
edited at several positions (Figure 6C). This is only
possible when the pre-mRNA forms a transiently stable
secondary structure in vivo, which is necessary for its
editing by ADAR enzymes that need double-stranded
RNA as substrates (18). This scenario is unique, as
pre-mRNA processing likely occurs concomitant with
transcription, and the structures of pre-mRNAs in vivo
are generally not known (19,20). As the pre-mRNA is
structured and at least transitionally stable in vivo, it
presents defined molecular binding sites, making the

HTR2c pre-mRNA a potential drug target similar to the
structured ribosomal RNAs recognized by antibiotics.

Most substances that change alternative splicing work
indirectly. They influence mainly post-translational modi-
fications, such as phosphorylation (21), or cause a change
in regulatory factors (22) [reviewed in (23)]. However,
pre-mRNA riboswitches have been identified in bacteria,
and a vitamin B1 riboswitch regulating alternative splicing
has been found in fungi (24). This demonstrates that
pre-mRNA splicing can be directly regulated by inter-
action of pre-mRNA with small molecules.

Given the importance of proper alternative splicing
regulation for human health, screening systems for sub-
stances that change alternative splicing have been de-
veloped (25).

Here, we report the identification of pyrvinium pamoate
as a drug that promotes inclusion of the alternative exon
of the serotonin receptor 2C through direct binding to the
pre-mRNA. Pre-mRNA binding causes a conformational
change, which makes the regulated splice site more access-
ible to the splicing machinery, promoting exon inclusion.

MATERIALS AND METHODS

Screening

The screen was performed as described previously (26).
The screening reporter construct described in Figure 1B
was stably integrated into HEK293 cells, and several cell
lines with single integrations were selected. The screening
reporter contained the human sequence chrX: 114082566–
114083052 in Hg19. The first three in frame ATG were
changed into GTG.

A
Va

I II III IV Vb
VI

ATG
DS

CMV ATGB

GTG----GFP----TAG GCCACCATG----RFP----TAG

PS
5A 5B

ATG ATG

C

GTG----GFP----TAG GTG----GFP----TAG GCCACCATG----RFP----TAGA5A5 5B
Figure 1. Screen to identify substances that promote exon Vb inclusion. (A) Schematic overview of the HTR2c gene. The dot indicates the start
codon. The shaded area is used to construct the fluorescence-based screening reporter genes. The dotted area containing exon Va, Vb and IV is used
to generate the RT–PCR-based reporter minigenes. (B) Reporter construct: the shaded area from the HTR2c gene in (A) was introduced into the
reporter pFlare that can generate both GFP and RFP. Lines indicate methionine codons that were mutated. (C) Protein products generated by the
reporter: inclusion of exon Vb creates GFP protein, and skipping of exon Vb destroys this open reading frame. In both cases, RFP is expressed and
serves as a control for non–splicing-related effects. The start codons used are indicated as dots.
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We validated the screen using the HBII-52 snoRNA
expression construct (4) as a positive control and, subse-
quently, selected two cell lines. These cell lines were used
to screen 1692 compounds of the UCLA chemical library
in a 96-well format. The drugs were dissolved in DMSO.
Their final concentration in the screen was 6 mM.
Fluorescence data were acquired using the typhoon
phosphor imager. The GFP/RFP ratio was measured at
three different time points (1, 2 and 3 days) after LOWESS
smoothing of the RFP to GFP ratios that removed
reading artifacts. We then identified the active compounds
by the slope of the RFP to GFP ratio change over the time
course of the experiment. Compared with using a single
data point, this procedure reduces the chance of a false
call because of data variability.

Next, we removed all hits that contained known tran-
scriptional activators and fluorescent compounds and
concentrated on the hits common to both cell lines.

Circular dichroism spectroscopy

Circular dichroism (CD) spectra were measured with a
JASCO J-810 Spectropolarimeter. Briefly, the RNA cor-
responding to chrX: 114082666–114082860, Hg19 (exon
Vb and intronic region) was gel purified from the
in vitro transcription reaction and resuspended in RNA
structure buffer (10mM Tris, pH 7, 100mM KCl and
10mM MgCl2) at a concentration of 20 mg/ml. Poly U
RNA (Sigma) was used as a control. The RNA
fragment was denatured in the presence of pyrvinium
pamoate or DMSO at 75�C for 5 min and then incubated
at room temperature for 15 min. The CD signal was
recorded from 250 to 300 nm at 2-nm intervals.

Cell culture

HEK293T cells (ATCC) were cultured in Dulbecco’s
modified Eagle’s medium containing 10% (v/v) fetal
bovine serum (Invitrogen). DNA plasmids were trans-
fected into the cells with calcium phosphate as described
previously (3). Serotonin receptor 2c gene splicing analysis
was performed as described previously (4). Cycloheximide
(Sigma) was added to the cells at 0.25 pM. Stable cell lines
were made from HEK293 cells transfected with pFlareHT
construct trough clonal selection.

DNA constructs

pFlareHT reporter construct was derived from pFlare by
cloning chrX: 114082566–114083052, Hg19 into
pFLare-5G (25) using BglII/XhoI, having the first three
in frame start codons mutated from ATG to GTG. The
reporter minigene pRSR-5HTcons for the splicing
analysis of serotonin receptor 2c was described previously
(4). To prepare the RNA probe, SE6 construct was made
as follow: DNA fragment, including 30-end of exon 5
(100 nt) and 50-end of intron 5 (97 nt) from HTR2c gene,
was polymerase chain reaction (PCR) amplified and
cloned into pCRII vector (Invitrogen) with SP6
promoter sequence introduced in the forward primer.

Array experiments

RNA was isolated using Quiagen RNeasy kit. Its quality
was determined by RNA integrity (RIN) number analysis,
and samples with a RIN> 9.5 were used following the
Affymetrix labelling procedure.
For the analysis, the signal from Affymetrix human

junction arrays was normalized using the ‘probe scaling’
method. The background was corrected with ProbeEffect
from GeneBase (27). The gene expression index was
computed from probes that were selected using
ProbeSelect from GeneBase (27). The gene expression
signals were computed using these probes. Genes were
considered expressed if the mean intensity was �500.
Genes were considered regulated if (i) they were expressed
in at least one condition (i.e. pyrvinium pamoate and/or
control); (ii) the fold-change was �1.5; and (iii) the
unpaired t-test P-value between gene intensities was
�0.05. For each probe, a splicing-index was computed.
Unpaired t-tests were performed to determine the differ-
ence in probe expression between the two samples as
described previously (28). Probe P-values in each
probeset were then summarized using Fisher’s method.
Using annotation files, splicing patterns (cassette exons,
50/30 alternative splice sites and mutually exclusive exons)
were tested for a difference between isoforms, selecting the
ones with a minimum number of regulated probeset (with
a P� 0.01) in each competing isoform (at least one-third
of ‘exclusion’ probesets have to be significant; at least one-
third of ‘inclusion’ probesets have to be significant and
show an opposite regulation for the splicing-index
compared with the ‘exclusion’ probesets). For example,
for a single cassette exon, the exclusion junction and at
least one of the three inclusion probesets (one exon
probeset and two inclusion junction probesets) have to
be significant and have to show an opposite regulation
for the splicing-index.

SHAPE assay

SHAPE assay was performed as previously described (29)
using in vitro transcribed RNA corresponding to coord-
inates chrX: 114082666–114082860 in Hg19. The reactions
were separated on a 10% acrylamide/8 M urea sequen-
cing gel. The gel was dried with a vacuum gel dryer
and exposed into a phosphor screen. The screen was
then scanned with Typhoon 9410 phosphorimager,
and the scanned bands were quantified with Image
Quant 5.2. Primers sequence: reverse transcription
primer 50-AATCCGAAAGTATTG-30.

Analysis of SHAPE data

The background band volumes in absence of
N-methylisatoic anhydride (NMIA) (lane 1 in Figure 6B)
were subtracted from the band volumes in presence of
NMIA (lanes 3 or 7 in Figure 6B) to determine the
extent of SHAPE reactivity with and without pyrvinium
pamoate. The resulting SHAPE reactivities were then
normalized using the boxplot analysis method, where the
number of outliers was capped at 5%, as explained by
Deigan et al. (30). Normalized SHAPE data for
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nucleotides U45 to A121 were used to refine the prediction
of secondary structure by free-energy minimization using
RNAstructure version 5.4 and the default slope and inter-
cept parameter values to determine pseudo free-energy
changes.

U1 binding assay

Biotin-11-UTP (Ambion) and a trace amount of
g-32P-UTP (Ambion) were used to in vitro transcribe the
RNA fragment used in SHAPE assay. The biotinylated
RNA probe was gel purified and refolded with 100 nM
pyrvinium pamoate or DMSO. Ten nanomolars of
folded biotinylated RNA probe was incubated in a 50 ml
reaction with 44% (vol/vol) HeLa nuclear extract (Dundee
Cell Products), 2mM adenosine triphosphate, 20mM
creatine phosphate, 3mM MgCl2 and 1mM DTT at
30�C for 20 min. One reaction without RNA probe was
used as a control. Twenty-five microlitres of the reaction
was set aside as non–cross-linking control, and the other
half of the reaction was ultraviolet (UV) cross-linked using
the Stratalinker (Stratagene) at 4�C for 10 min. The
biotinylated RNA was then isolated with streptavidin-
conjugated Dynabeads (Invitrogen) and was used as the
template for reverse transcription reaction and 18-cycle
PCR with U1 snRNA-specific primers.

Isolation of supraspliceosomes

Nuclear supernatants enriched in supraspliceosomes were
prepared as described previously (31). Briefly, nuclear
supernatants enriched for supraspliceosomes were
prepared from purified nuclei of HEK293 cells by
microsonication of the nuclei and precipitation of the
chromatin. The nuclear supernatants were fractionated
in 10–45% glycerol gradients. Aliquots from gradient
fractions were analysed by western blot. RNA was ex-
tracted from gradient fractions as described previously
(31) and analysed by reverse transcriptase–PCR (RT–
PCR) as described previously (32).

Fluorometric assay

All the RNA oligonucleotides were synthesized and
purified by IDT (Integrated DNA Technologies Inc.).
Fluorescence emission spectra in the wavelength range
560–680 nm for pyrvinium pamoate were obtained using
an ISS K2 Multifrequency Phase Fluorometer (ISS Inc.,
Champaign, IL, USA) at room temperature using 460 nm
as the excitation wavelength. The intensities at 620 nm
were used to calculate the fluorescent signal changes.

Primers used

HTR2c reporter gene for splicing assay:
Forward: GCAATCCTTTATGATTATGTC
Reverse: GGTTCATTGGTATGCCGA
pFlare HT reporter gene:
Forward: GGCCACTACCTAGATATTTGTG
Reverse: CGTCGCCGTCCAGCTCGACCAG
pFRHT reporter gene:
Forward: GGCCACTACCTAGATATTTGTG
Reverse: CAGCGGTTCCATCTTCCAGCGG

SE6 construct for RNA probe:
Forward: GCCCTTATTTAGGTGACACTATAGAA
GGATCGGTATGTAGCAATAC
Reverse: CTAGAAAGCTTGTTACCAGTCGACGT
CTGTACG
U1 snRNA:
Forward: GGGGAGATACCATGATCACG
Reverse: GTCGAGTTTCCCACATTTGG

RESULTS

Screen for substances that change alternative splicing
of the HTR2c

To identify substances that change the splicing of the
HTR2c, we generated a reporter construct that expresses
green fluorescent protein when exon Vb is included in the
pre-mRNA (Figure 1A and B). We synthesized an exon V
fragment that had all but the last ATG mutated into
GTG, which allows protein expression from the last
ATG in exon Vb. This construct was cloned into
pFLare-5G (25). Exon Vb inclusion generates a short
peptide KIAIVWAISI corresponding to amino acids 76–
85 of the serotonin receptor 2C. The resulting pFlare-HT
construct expresses GFP with the attached short peptide
when exon Vb is included. Conversely, skipping of exon
Vb prevents GFP expression, as it destroys the open
reading frame. The GFP cassette is flanked downstream
by RFP, which is expressed in the absence of GFP, as
RFP contains the only start codon. RFP is, therefore,
always expressed and serves as a control for non–
splicing-related effects, such as RNA stability, transcrip-
tional activity and an increase in translation. We used the
change in the ratio of GFP to RFP as a measure of
splicing-dependent exon Vb inclusion.

The reporter construct was stably integrated into
HEK293 cells, and several cell lines with single integration
of the reporter construct were selected. We validated the
screen using an HBII-52 psnoRNA expression construct
as a positive control (14), and subsequently selected two
cell lines that showed an increase of the GFP to RFP ratio
in response to HBII-52 overexpression. These cell lines
were used to screen 1692 compounds of the UCLA
chemical library in a 384-well format (25).

The final concentration of the compounds dissolved in
DMSO was 6 mM in the screen. Fluorescence data were
acquired using the typhoon phosphoimager. The GFP/
RFP ratio was measured at four different time points (0,
1, 2 and 3 days) (Supplementary Figure S1A). We then
performed locally weighted scatterplot smoothing
(LOWESS) (33) of the RFP to GFP ratios that removed
reading artifacts (Supplementary Figure S1B).

Compounds that changed the slope of the RFP to GFP
ratio during the time course were considered active
(Supplementary Figure S1C). Compared with using a
single data point, this procedure reduces the chance of a
false call because of data variability. We considered points
outside the 3� standard deviation of the data significant.
Our five plates showed similar background distribution
(Figure 3C). The overall Z factor (34), the ratio of
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the sum of standard deviations and differences in means
was 0.61.

Next, we removed all hits that contained known tran-
scriptional activators and fluorescent compounds and
concentrated on the hits common for both cell lines.
Using this primary screen, we identified 22 compounds
that promote exon Vb inclusion (Supplementary
Figure S2).

In summary, we successfully set-up a screen that
identified chemical compounds that promote exon Vb
inclusion.

A secondary screen validates pyrvinium pamoate as a
substance that promotes exon Vb inclusion

We next validated the hits observed in the primary screen
in secondary screens. First, we used a Renilla luciferase
construct, which is similar to pFlare-HT, but it
uses luciferase and renilla as reporters, as shown in
Figure 2A. Two compounds, pyrvinium pamoate and
doxorubicin from the primary screen had an effect with
this protein-based reporter after 12 h of treatment
(Figure 2B). We next used RT–PCR for further validation
using a reporter minigene that contains all coding exons
and their introns (Figure 1). Intron 5 has been shortened
from 50 kb to 3000 nt, leaving 1500 nt from the 50 and 30

intronic region, respectively (Figure 1A). Pyrvinium
pamoate showed the highest efficacy in this RNA-based
secondary screen and was further characterized.
Pyrvinium pamoate (Figure 3A) has been previously
used as an FDA approved pinworm drug and is known
to bind DNA (35,36). The compound has been recently
described as an activator of the Wnt signalling pathway
acting through casein kinase I, which is inhibited at a con-
centration of 10 nM (37). Interestingly, doxorubicin, an
anti-tumour drug also showed a small increase in exon
Vb inclusion when tested by RT–PCR (Figure 2C).
Doxorubicin consists of an aromatic ring structure that
intercalates with DNA and an amino sugar that binds to
AT base pairs (38). The other primary hits shown in
Supplementary Figure S2 could not be confirmed in
both secondary screens.

Thus, our screen identified two compounds with
binding affinity to double-stranded nucleic acids. We
characterized the compound with the strongest effect,
pyrvinium pamoate, in more detail.

Characterization of pyrvinium pamoate action

We next determined the concentration of pyrvinium
pamoate (Figure 3A) needed to promote exon Vb inclu-
sion. We analysed the effect of increasing pyrvinium
pamoate concentrations on HEK293 cells transfected
with the HTR2c reporter gene. Cells were transfected
with the reporter gene overnight, and pyrvinium
pamoate was then added at the concentrations and time
indicated. As shown in Figure 3B, we observe a switch
from exon skipping to predominant inclusion with an
IC50 of �6 mM. Next, we determined the time course of
pyrvinium pamoate action and analysed its effect on exon
Vb usage between 15 min and 6 h, again using cells trans-
fected with a reporter gene. As shown in Figure 3C, exon

inclusion starts around 2 h. This time scale is much shorter
than the effects seen with other substances that change
splice site selection, which typically occurs over night (23).
The rapid onset of the pyrvinium pamoate effect

suggests that it might be independent of protein synthesis
(Figure 3C). We tested this idea by treating cells trans-
fected with the HTR2c reporter minigene with
cycloheximide and pyrvinium pamoate overnight, which
blocks protein synthesis. As shown in Figure 3D, even
without protein synthesis, there is a promotion of exon
Vb inclusion by pyrvinium pamoate.
We conclude that pyrvinium pamoate acts rapidly

without the need of protein synthesis in the low
micromolar range on the HTR2c pre-mRNA.

Pyrvinium pamoate does not change the editing of
the HTR2c pre-mRNA

The alternative exon Vb of the HTR2c pre-mRNA can be
included via two major mechanisms. The first mechanism
is A–I editing at one or more of five editing sites in exon
Vb. As the inosine is interpreted as a guanosine by the
ribosome, editing changes the amino acid composition of
the encoded receptor and leads to receptors with less
efficacy (2,9,39). The second pathway is the inclusion of
the non-edited exon, which is achieved in neurons by pro-
cessed snoRNAs derived from HBII-52 (SNORD115)
(psnoRNAs) that promote exon Vb inclusion through an
unknown mechanism (3,4). To determine which of these
pathways is promoted by pyrvinium pamoate, we directly
sequenced the RT–PCR-derived band that contained exon
Vb. As there is no endogenous expression of HTR2c in
HEK293 cells, we used reporter genes for the analysis. As
shown in Figure 4, the sequence shows adenosine at the
five editing positions, indicating that pyrvinium pamoate
does not cause editing of the HTR2c pre-mRNA and
could potentially act similar to the psnoRNA HBII-52,
which also promotes exon Vb inclusion without
changing the editing status of the receptor pre-mRNA (4).

Pyrvinium pamoate binds directly to HTR2c RNA

Previously, it has been shown that pyrvinium pamoate
intercalates with DNA and binds with an affinity of
0.1mM (35). As the serotonin receptor pre-mRNA
forms a secondary structure in vivo, as indicated by the
presence of functional RNA editing sites, we investigated
whether pyrvinium pamoate directly binds to the HTR2c
RNA. We used a 200-nt-long RNA fragment correspond-
ing to the double-stranded region shown in Figure 6C.
The 2.5 mM RNA was incubated with 20 and 200 mM

pyrvinium pamoate, and CD was measured. As shown in
Figure 5A, pyrvinium pamoate changed the CD spectrum
of the RNA, with the maximum change �265 nm.
As a control, 2.5 mM poly U RNA (homopolymer 300–

800 nt) was incubated with 20 and 200 mM pyrvinium
pamoate, and we did not observe a change in CD
(Figure 5B).
This suggests that pyrvinium pamoate binds directly to

the structured HTR2c RNA and likely changes its tertiary
conformation.
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Pyrvinium pamoate acts on HTR2c RNA within
the spliceosome

We next asked whether pyrvinium pamoate acts through
the spliceosome. It has been shown that pre-mRNAs are
assembled within supraspliceosomes during their entire
lifetime in the nucleus (40). Furthermore, several regula-
tory splicing factors and alternative isoforms of a number
of tested transcripts were found predominantly in
supraspliceosomes (32,40,41). As HTR2c exon 5 b is
edited by the A->I editing enzymes, it is pertinent to
note that supraspliceosomes harbour the A->I editing
enzymes ADAR1 and ADAR2 (42). To search for
pyrvinium pamoate function in spliceosomes, HEK293
cells were transfected for 24 h with serotonin receptor
expression construct pRSR-5HTcons, and they were
then treated with 10 mM pyrvinium pamoate. After 6 h,
the cells were harvested, and nuclear supernatants
enriched in supraspliceosomes were prepared and
fractionated in 10–45% glycerol gradients as described
previously (31). As shown in Figure 5C and D, we
found that the serotonin receptor mRNA peaks with
supraspliceosomes together with the regulatory splicing
factor hnRNP G (Figure 5E), which was previously
shown to be associated with supraspliceosomes (43).

Furthermore, we see a change in pre-mRNA splicing
within the fractions containing splicing components on
addition of pyrvinium pamoate (Figure 5D and F). It is,
therefore, likely that pyrvinium pamoate changes alterna-
tive pre-mRNA splicing and not the stability or transcrip-
tion of one isoform.

Pyrvinium Pamoate changes the conformation of the
HTR2c RNA in vitro

Based on the CD spectrum analysis, we hypothesized that
pyrvinium pamoate changes the secondary structure of the
HTR2c pre-mRNA.

To determine the exact changes in RNA structure
caused by pyrvinium pamoate, we performed SHAPE (se-
lective 20 hydroxyl acylation analysed by primer extension)
analysis. A 200-nt-long fragment of HTR2c pre-mRNA
was analysed by SHAPE, as described previously (29).
Briefly, RNA was denatured, renatured in the presence
or absence of pyrvinium pamoate and incubated with
NMIA, which reacts with accessible 20-OH groups. After
a further denaturing step, reverse transcription with an
end-labelled primer is performed. The reverse transcript-
ase stops at each modified nucleotide, generating a band
that indicates a single-stranded conformation.

A

B C

Figure 2. Confirmation of pyrvinium pamoate in secondary screens. (A) Structure of the firefly/renilla construct. The start codons are indicated as
dots, similar to Figure 1. (B) Validation of pyrvinium pamoate and doxorubicin as drugs that change alternative splicing of the reporter using the
firefly/renilla chemoluminescence as readout. (C) RT–PCR-based screen of the compounds, using a reporter minigene, shown in Figure 1A, dotted
area. Treatment was overnight using 5mM of each drug. The numbers indicate the ratio between exon inclusion and exon skipping.
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We compared RNA without pyrvinium pamoate
addition with RNA, where an increasing amount of
pyrvinium pamoate (1–5mM) was added after the initial
denaturation. Changes in the band intensities of each in-
dividual nucleotide are shown in Figure 6B and are
quantified in Figure 6E.

We then used the program ‘RNAstructure’ to determine
the secondary structure of the HTR2c RNA pre-mRNA
fragment, both in the presence and absence of pyrvinium
pamoate (44). In the absence of pyrvinium pamoate, the
SHAPE assay indicates the structure shown in Figure 6C,
which is also predicted by the centroid and minimum free-
energy RNA structure prediction (45). The structure
consists of a stem and three loops. The 45-nt-long stem
contains the five editing sites and, therefore, likely forms
in vivo, as the editing enzymes require double-stranded
RNA. These stem structures flank a region of �90 nt
that contains the alternative 50 splice site and undergoes
structural changes. Importantly, the exonic parts and the
first intronic G of the regulated splice site are localized in a
stem, which could explain why the splice site is blocked
(Figure 6C, arrow). Interestingly, mutation in the splice
site that leads to its activation is predicted to destroy this
stem formation (4).

The presence of pyrvinium pamoate causes a structural
change and generates the structure shown in Figure 6D.
Through an interaction between loop I and II, a longer
stem is formed, and loop III is largely extended.

Importantly, the regulated distal splice site is now no
longer present in a stem structure (Figure 6D, arrow).
The two structures are energetically similar (�G�=
�56.8 and �52.6 kcal/mol for structures in Figure 6C
and D). This is consistent with a small molecule or
protein being able to change the conformation, which
likely aids in biological regulation (46).
The structure probing data indicate that pyrvinium

pamoate promotes a rearrangement of the RNA structure
that moves the regulated 50 splice site from a partially
bound to a completely free conformation.

Pyrvinium pamoate promotes U1 snRNP binding
to exon Vb

The structure probing data suggest that pyrvinium
pamoate makes exon Vb more accessible to U1 snRNP
binding. We next tested whether pyrvinium pamoate
actually increases U1 binding and performed cross-linking
experiments. A biotinylated RNA corresponding to the
RNA used in the SHAPE experiments was refolded
using pyrvinium pamoate and DMSO control, followed
by incubation with nuclear extract and cross-linking.
RNA bound to the beads was released by proteinase K
digestion of the attached proteins, followed by RNA puri-
fication. We then detected U1 snRNA by RT–PCR. As
shown in Figure 7, U1 snRNA occupancy increased
�50% in the presence of pyrvinium pamoate.

A B

C

D

Figure 3. Characterization of pyrvinium pamoate action. (A) Chemical structure of pyrvinium pamoate. (B) Titration curve of pyrvinium pamoate
using cells transiently transfected with the HTR2c reporter construct. The changes in exon Vb usage were determined using the primers schematically
indicated in Figure 1. The graph underneath shows the statistical evaluation of three independent experiments. (C) Time course of pyrvinium
pamoate using an assay similar to the one in (B). (D) Effect of pyrvinium pamoate on exon Vb inclusion in the presence of cycloheximide. Cells
were transiently transfected with the HTR2c gene and treated with 10 mM cyclohexamide overnight. The cells were then treated with pyrvinium
pamoate for 2 h.

Nucleic Acids Research, 2013, Vol. 41, No. 6 3825



The data indicate that pyrvinium pamoate causes a
change in secondary structure that increases U1 binding
to the regulated splice site.

Phylogenetic analysis indicates evolutionary conservation
of the structures

The HTR2c gene is present in placental mammals. To
identify evolutionary conserved sequences, we performed
a CLUSTAL W alignment of the regulated region
(Supplementary Figure S3). The changes throughout evo-
lution are indicated in Figure 6C and D. The alignment
indicates that the stem structures are highly conserved.
Mutations that keep the structure forming without
pyrvinium pamoate are present in five stem locations,
whereas only three locations in the stems are affected by
non-compensatory mutations. In contrast, 13 positions in
loops are altered by mutations. The last 65 nt of the se-
quences shown in Figure 6C and D are encoded by an
intron that does not have a coding requirement, but espe-
cially the stem remains highly conserved. Therefore, the
data indicate a high-evolutionary pressure to maintain the
double-stranded RNA structure, suggesting a functional
relevance.

Genome-wide effects of pyrvinium pamoate on alternative
splicing indicate a preference for double-stranded RNA
regions rich in A–U base pairs

We next determined whether pyrvinium pamoate is select-
ive for the HTR2c pre-mRNA and performed genome
wide exon junction array analysis. We found (Figure 3)
that pyrvinium pamoate acts within 6 h on the serotonin
receptor 2C reporter gene; therefore, we incubated
HEK293 cells for 6 h with 10 mM pyrvinium pamoate.
The array analysis indicated 376 changes in alternative

splice site selection and 176 changes in overall gene expres-
sion after 6 h of treatment. RT–PCR analysis showed a
validation rate of >73% (11/15) for splicing events
(Supplementary Figure S4). To identify possible long-
term effects, we repeated this array analysis by
treating HEK293 cells with pyrvinium pamoate for 16 h.

The longer treatment resulted in 5284 changes in overall
gene expression and 1120 changes in splicing of cassette
exons. Changes in alternative splicing had a similar valid-
ation rate of >87% (14/16). The changes after 6 h affected
mostly mitogen-activated protein kinase (MAPK) sig-
nalling pathways and toll-like receptor pathways.
Changes after 16 h affected multiple biological pathways
but were most predominant in the p53 pathway and in the
spliceosome (Supplementary Figures S5–S7). These data
indicate that pyrvinium pamoate acts in two stages: first, it
rapidly changes alternative splice site usage, with only a
minor influence on overall gene expression. On longer
exposure, pyrvinium pamoate affects mainly overall gene
expression, possibly through the activation of MAPK
pathways.

We next analysed the pyrvinium pamoate regulated
exons for common features. The 6 and 16 h treatment
gave non-overlapping sets of changed RNAs. Given the
activation of MAPK pathways after 6 h, we assumed that
most of the later changes are indirect and concentrated on
the exons changed after 6 h.

Exons that were regulated by pyrvinium pamoate
within 6 h showed similar overall base composition,
enhancer/silencer presence and splice site strength. We,
therefore, asked whether pyrvinium pamoate targets pref-
erential double-stranded pre-mRNA regions and
compared pyrvinium pamoate regulated alternative
exons with randomly selected non-regulated alternative
exons (control exons). We found no difference between
double strandedness of the exons or their splice sites
between the two groups (Figure 8A and B). The double
strandedness was calculated as the likelihood of these
bases to be unpaired, expressed as a PU value (possibility
that all base pairs in a substring are unpaired). The PU
value is an average of possible conformations (20).

It has been suggested that pyrvinium pamoate interacts
with A–T rich base pairs in the minor groove of DNA
(36). The DNA complex of the second drug, doxorubicin,
which we identified, has been determined by crystalliza-
tion and nuclear magnetic resonance. The structure of the

Figure 4. Direct sequencing of exon Vb after pyrvinium pamoate treatment. The direct sequencing result from the PCR product corresponding to
the exon inclusion band after pyrvinium pamoate treatment is shown. The five major editing sites A–E are indicated and point to the edited
adenosines. The control was DMSO treated. Note that all editing sites read as adenosine, demonstrating the absence of RNA editing.
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doxorubicin–DNA complex indicates that in addition to
the intercalation of the anthracycline structure, the amino
sugar interacts with A–T base pairs in the minor groove of
DNA (38). It is thus possible that both substances
promoting exon Vb usage could have a preference for
A–U rich base pairs on double-stranded RNA. We, there-
fore, tested the occurrence of AU base pairs in
double-stranded regions of pyrvinium pamoate regulated
exons. We looked at a 200-nt-long segment where the
regulated exon was placed in the middle and determined
the structure with minimum energy using RNA fold (45).
We then counted the occurrence of all A–U, G–C and G–
U base pairs in this region. As shown in Figure 8C, we
found a significant enrichment of A–U base pairs in
pyrvinium pamoate regulated exons that was statistical
significant (P=0.00021).

We next tested biochemically whether pyrvinium
pamoate can discriminate between RNA sequences.
Pyrvinium pamoate shows an increase in fluorescence
when added to DNA that reflects its binding to DNA
(36). We found a similar increase in fluorescence at
620 nM, when we added pyrvinium pamoate to dsRNA.
We next tested the change in fluorescence using 18mer
RNA oligos. As shown in Figure 8D, the change in
pyrvinium pamoate fluorescence was strongest when it
was added to A18:U18 double-stranded RNAs. The
change was about half as strong for a G:C rich dsRNA
or a double-stranded RNA composed of mainly
alternating A:U sequences. This indicates that pyrvinium
pamoate discriminates between double-stranded RNAs
with different composition.

A C

D

E

F

B

Figure 5. Pyrvinium pamoate changes the CD of the structured part of the HTR2c pre-RNA and affects alternative splicing in the supraspliceosome.
(A) CD spectrum of 2.5 mM HTR2c RNA incubated with an increasing amount of pyrvinium pamoate (0, 20 and 200mM), as well as pyrvinium
pamoate without RNA. (B) CD spectrum of 2.5 mM poly U RNA incubated with an increasing amount of pyrvinium pamoate (0, 20 and 200mM).
Note that there is no change in the CD spectrum, and all the spectra are superimposed. (C–F) Human 293 cells transfected with a serotonin receptor
expression construct pRSR-5HTcons were treated with 10 mM pyrivinium pamoate for 6 h. Next, nuclear supernatants enriched in supraspliceosomes
were prepared from treated and untreated cells and were fractionated in 10–45% glycerol gradients. Aliquots from even gradient fractions were
analysed by RT–PCR and western blotting. (C) A schematic drawing of the HTR2c pre-mRNA showing the alternative 50 splice sites (50SS_PS,
50ss_DS) that give rise to the alternatively spliced 5a and 5b isoforms, respectively. (D) RT–PCR analyses of aliquots of RNA extracted from even
gradient fractions, untreated (upper panel) or treated with 10 mM pyrvinium pamoate (lower panel) using primer pairs that flank the respective
alternative exons as indicated. The alternatively spliced isoforms of the HTR2c transcript are schematically drawn on the left, and the respective PCR
primer pairs are indicated by arrowheads. Supraspliceosomes peak in fractions 8–12. The gradients were calibrated with 200S TMV (tobacco mosaic
virus) particles, which sedimented in fractions 9 and 10 of a parallel gradient. (E) Western blot analyses using anti-hnRNP G antibodies. (F)
Percentage of inclusion of exon 5b with- and without treatment with pyrvinium pamoate (from D, average of three independent experiments).
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Together, these data indicate that pyrvinium pamoate
selects alternative exons that show a higher abundance of
A–U base pairs in their vicinity.

DISCUSSION

Successful identification of a substance that changes
alternative splicing of the serotonin receptor 2C

Defects in pre-mRNA processing are increasingly
recognized as a cause or consequence of human disease.
Therefore, several screening systems have been developed
that identified substances modifying alternative splicing.
These efforts have uncovered substances influencing
the alternative splicing of SMN2 exon 7, as well as

compounds that bind to tau exon 10 pre-mRNA. These
genes are involved in spinal muscular atrophy and
tauopathies, respectively.

Compounds changing alternative splicing of SMN2
exon 7 work by modulating trans-acting factors regulating
the alternative exon through post-translational modifica-
tions. Aminoglycosides have been identified that bind the
structured 50 splice sites in tau exon 10 (47), but they do
not influence alternative splicing of the exon. In contrast,
aminoglycoside antibiotics, such as neomycin B, tobra-
mycin and gentamycin C1 inhibit bacterial protein synthe-
sis after binding to ribosomal RNA (17). It is likely that
the lack of defined stable structures in pre-mRNAs makes
it difficult to target pre-mRNA directly, as no stable
binding sites for interacting drugs are present.

A B

C

D

E

Figure 6. Structure probing of the exon Vb region. (A) Schematic representation of the probe used. 5B is the regulated exon and DS and PS are
proximal and distal splice sites, respectively. The line indicates the SP6 polymerase-generated probe, and the arrow indicates the location of the
reverse transcription primer. (B) SHAPE assay of the RNA treated with pyrvinium pamoate. RNA was analysed by SHAPE assay in the presence of
an increasing amount of pyrvinium pamoate, 1, 2 and 5 mM (lanes 4–6). Lanes 1 and 2 have no NMIA, and lane 2 contains 5mM pyrvinium
pamoate. The primer used for reverse transcription and DNA sequencing is 50-AATCCGAAAGTATTG-30, located chrX: 114082824–114082809.
The numbering of all gels refers to the structures shown in panel C that encompasses the reference sequence chrX: 114082671–114082860 in Hg19.
The sequencing gel is labelled in sense orientation. The black arrow indicates the change at the 50 splice site. (C) Secondary structures determined
from the SHAPE assay. The program ‘RNAstructure’ predicts structure C to form in the absence of pyrvinium pamoate (lane 3). In the presence of
pyrvinium pamoate, structure D is formed (land 6). The editing sites B–E are indicated by arrows. The boxed sequence corresponds to the binding
site of the HBII-52 snoRNA. The evolutionary conservation is indicated by shaded circles around the nucleotides: pink: changes in evolution that
would disrupt this structure; green: changes in evolution that will keep this structure; blue: nucleotides that are deleted in some organisms.
(E) Difference in NMIA reactivity between the presence and absence of pyrvinium pamoate. The graph shows the difference in intensity between
structure probing without pyrvinium pamoate (lane 3) and with pyrvinium pamoate (lane 7) for each nucleotide. Loops I, II and III are indicated;
DS and PS are distal and proximal splice sites, respectively. A positive difference indicates that the nucleotide is more reactive; a negative difference
indicates a closer conformation.
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C D

Figure 8. General features of pyrvinium pamoate regulated exons. (A) Probability of being unpaired (PU) values for alternative exons and their
splice sites regulated by pyrvinium pamoate after 6 h and random control alternative exons. (B) Stem length, stability and structural similarity to the
serotonin receptor pre-mRNA of the regulated and control exons. (C) Number of AU base pairs in stem structures forming around regulated and
control exons. (D) Change in fluorescence at 620 nm after adding pyrvinium pamoate to 10 mM of the indicated oligo nucleotides. A+U:
double-stranded RNA of A18 and U18; GC: double-stranded RNA of CGCGCGCCCGGGCGCGCG; AU: double-stranded RNA of
AUAUAUAAAUUUAUAUAU; and U: single-stranded U18.

A B

C

Figure 7. Pyrvinium pamoate increases snRNA binding to HTR2c exon Vb. (A) Schematic outline of the method used to detect U1snRNA and exon
5B binding. The biotinylated probe corresponds to the RNA used in Figure 6. (B) RT–PCR analysis of RNA extracted from streptavidin-conjugated
Dynabeads. Lane 1 and 2: RNA probe folded in DMSO; lane 3 and 4, RNA probe folded in 10 mM pyrvinium pamoate; lane 5 and 6: nuclear extract
only; lane 2, 4 and 6: no UV cross-linking. (C) Quantification and statistic analysis of the RT–PCR results.
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We, therefore, concentrated on the serotonin receptor
pre-mRNA that forms a secondary structure in vivo. This
pre-mRNA is edited at five sites, which occurs only in
double-stranded RNA regions that are formed long
enough to undergo modifications by ADAR. Previously,
a synthetic helix-threading peptide was shown to bind to
the double-stranded region of the serotonin pre-mRNA
in vitro, which further suggests a stable structure (48).
Screening a chemical library, we identified pyrvinium
pamoate as a substance that strongly promotes exon Vb
usage. Pyrvinium pamoate likely acts through the
spliceosome, as we show that treatment with pyrvinium
pamoate lead to increase in exon 5b inclusion within
splicing complexes. CD and fluorescent spectra, as well
as shape analysis, indicate that pyrvinium pamoate binds
directly to the RNA and changes its conformation.
The data show the principle that pre-mRNAs with a

strong secondary structure can be drug targets and poten-
tial alternatives to proteins. The identification of fen–phen
validated the HTR2c as an anti-appetite drug target, but it
also illustrated the need for alternative treatment options,
as the drug cross-reacted with the 5HT2A receptor
protein, causing valvular heart disease (49). The cross-re-
activity is caused by the similarity of the proteins, which is
not present on the pre-mRNA level, as the intronic regions
are different. Therefore, ligands binding to the RNA could
be valuable tools to manipulate the HTR2 system.
As pyrvinium pamoate promotes the inclusion of the

non-edited form of the receptor that has the strongest
anorexic effect, we tested the effect of pyrvinium
pamoate on feeding behaviour through injection in the
brain. We observed seizures of the animals as well as a
reduction in food intake (data not shown). The inert
toxicity of the drug makes it, however, impossible to
identify an effect on food uptake via the receptor.

Model for pyrvinium pamoate action

Pyrvinium pamoate has previously been shown to bind to
DNA through both intercalation and electrostatic inter-
actions (35). The staining pattern in nuclei suggests that
pyrvinium pamoate binds to A–T rich DNA (36). Binding
to DNA leads to its unwinding (35). Using CD spectros-
copy, we found that pyrvinium pamoate binds also to
double-stranded RNA, which is similar to other nucleic
acid stains. The concentration of pyrvinium pamoate
needed in vitro to see a change in CD spectroscopy is
two times larger than the concentration needed in
SHAPE assays and in vivo. This likely reflects differences
between the techniques.
Using short RNA oligonucleotides, we found that

A18:U18 double-stranded RNA showed the highest
change in fluorescence of pyrvinium pamoate, suggesting
that the drug preferentially binds to double-stranded
RNAs having complementary A and U stretches. The
stem formed by the serotonin pre-mRNAs contains five
AA:UU dinucleotides that are evenly distributed. It is
possible that pyrvinium pamoate binds to these regions.
The detailed SHAPE analysis indicates that in the

absence of pyrvinium pamoate, the regulated 50 splice
site is partially in a double-stranded conformation,

which likely limits the access of U1 snRNP to the splice
site and inhibits its recognition. In vitro, we found less
binding of U1 snRNP to the HTR2c pre-mRNA, which
supports this model and in agreement with skipping of
exon Vb being the default mode (4). Pyrvinium pamoate
binds to the RNA and causes a conformational change,
which brings the regulated 50 splice site into an unbound
conformation that is likely recognized. The mechanism of
this conformational change is not clear. Pyrvinium
pamoate addition changes the number of nucleotides
that are not bound in the tested RNA from 44 to 52,
suggesting that the drug causes a partial unwinding of
double-stranded RNA, which has also been observed in
DNA (35).

In summary, all the data support a model where
pyrvinium pamoate binds to A–U rich regions in the
dsRNA of the serotonin receptor, which leads to a relax-
ation of the RNA structure making the 50 splice site more
accessible.

Screen shows that a small ligand can discriminate a
related set of exons

To determine the genome-wide effect of pyrvinium
pamoate, we performed array analysis and found that
the drug changes numerous alternative exons after a 6-h
treatment time. Analysis of these exons showed they
contain a significantly higher number of A–U base pairs
in double-stranded regions than control exons. This indi-
cates that the composition of transiently forming
double-stranded RNA structures can contribute to splice
site selection. The results also show that a coordinated
change in splicing can be triggered by small molecules
that interact with these structures. However, natural com-
pounds, possibly tissue-specific metabolites that have
properties similar to pyrvinium pamoate remain to be
determined.

The action of pyrvinium pamoate on the HTR2c
pre-mRNA resembles a riboswitch

HTR2c pre-mRNA reacts to the direct binding of
pyrvinium within minutes with a conformational change
that causes a change in splice site selection. This rapid
structural change to a ligand is reminiscent to a
riboswitch, RNA structures mainly found in bacteria.
The only known eukaryotic riboswitch is the thiamine
pyrophosphate riboswitch found in Neurospora (24) and
Arabidopsis (50). In both systems, the riboswitch changes
alternative splicing. The HTR2c pre-mRNA interacting
with pyrvinium pamoate resembles this scenario, but the
change is triggered by a synthetic drug.

Given the phylogenetic conservation of the HTR2c
system, it is possible that endogenous small ligands exist
having the same effect.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–7.
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