Summary
The recent structural studies have narrowed down the number of possible models for sister chromatid cohesion and provide a clearer view of how the components of the cohesin complex interact. Nonetheless, several key questions regarding the mechanism of sister chromatid cohesion still need to be addressed: can cohesins form higher-order structures, how is the cohesin complex recruited to specific regions of the chromosome, how does the passage of the replication fork lead to the linkage of sister chromatids and what role does ATP hydrolysis play in sister chromatid cohesion. Undoubtedly, the establishment and maintenance of sister chromatid cohesion is a dynamic process and many of its moving parts still need to be elucidated.

Acknowledgements
We thank Ann Corsi, April Robbins, Ritu Agarwal, Paul Megee, Doug Koshland and Tatsuya Hirano for stimulating and helpful discussions.

References
9 Toth, A. et al. (1999) Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 13, 320–333
12 Blat, Y. et al. (1999) Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98, 249–259
17 Skibbens, R.V. et al. (1999) Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev. 13, 307–319
18 Ross, K.E. et al. (2001) Separase: a conserved protease separating more than just sisters. Trends Cell Biol. 11, 1–3

Joseph L. Campbell
Oma Cohen-Fix*
The Laboratory of Molecular and Cellular Biology, NIDDK, NIH 8 Center Drive, Bethesda, MD 20892, USA.
*e-mail: ornacf@helix.nih.gov

Protein Sequence Motif

YTH: a new domain in nuclear proteins
Peter Stoilov, Ilona Rafalska and Stefan Stamm

A novel 100–150-residue domain has been identified in the human splicing factor YT521-B and its Drosophila and yeast homologues. Homology searches show that the domain is typical for the eukaryotes and is particularly abundant in plants. It is predicted to adopt a mixed α-helix–β-sheet fold and to bind to RNA. We propose the name YTH for YT521-B homology for the domain.

Published online: 5 September 2002

One of the most prominent features of eukaryotic genes is their discontinuity. Analysis of the working draft of the human genome has shown that, on average, introns account for 95% of the pre-mRNA [1]. The precise removal of intron sequences by the spliceosome is crucial for gene expression. However, the sequences of the two splice sites and the branch point that are recognized by spliceosome components are clearly insufficient to identify the exons in the pre-mRNA sequence. Correct recognition of exons is achieved by the cooperative action of multiple splicing factors auxiliary to the spliceosome [2]. These factors bind in a sequence-specific manner to the pre-mRNA [3,4] and recruit the spliceosome components to the splice sites. The nuclear protein YT521 has been identified in two-hybrid screens with splicing factors [5,6]. It interacts with several splicing factors, both in two-hybrid and co-immunoprecipitation assays [5,6]. In addition, the alternative splicing patterns of the splicing factor SRp20 and hTra2-β pre-mRNAs are altered by YT521-B [6]. YT521 does not belong to any of the known splicing factor families. The only sequence feature that it shares with some of the splicing factors is an R/E/D repeat. Here we report the identification of a new domain in splicing factor YT521-B and a number of proteins of unknown function that could be involved in RNA binding.

Domain characterization
During BLAST searches to identify YT521-B homologues, a conserved part of the protein was identified between residues 356 and 499 of the rat YT521-B

http://tibs.trends.com 0968-0004/02/$ – see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0968-0004(02)02189-8
protein. We therefore performed a PSI-BLAST [7] search with this portion of the YT521-B protein, using an exclusion threshold of 0.005. After four iterations, multiple proteins from *Arabidopsis thaliana*, *Oryza sativa*, *Homo sapiens*, *Mus musculus*, *Drosophila melanogaster*, *Plasmodium falciparum* and *Saccharomyces cerevisiae* were found to have similar regions, with E values in the range 10^{-11} to 10^{-60}. Many of these protein sequences were derived from automated gene prediction and were not confirmed by mRNA or EST sequences. To identify sequences of existing proteins, we performed BLAST [7] searches with the conserved region against the translated nonredundant nucleotide databases at NCBI using rat YT521-B (shown in italic). Wherever available, the conceptual translation provided in the database was used for the alignment. If no conceptual translation was provided (i.e., for the EST sequences), the reading frame identified by the BLAST search was used if it did not contain stop codons or unknown residues. Redundant sequences originating from the same species were omitted. The similar residues that are present in all sequences are shaded (green) using the PAM250 matrix. The identical residues are shaded in yellow. The secondary structure, as predicted by the PHD program, is shown on top. E denotes extended (β-strands) structure and H denotes the predicted α-helices. The multiple sequence alignment (accession number ALIGN_000432) has been deposited at the European Bioinformatics Institute (ftp://ftp.ebi.ac.uk/pub/databases/embl/align/).

The sequences from these searches that aligned to the full length of the query and had an E value $< 10^{-6}$ were aligned using CLUSTALW [8] after the redundancies had been removed (Fig. 1). Additional BLAST searches against the genome databases confirmed that the conserved region is present exclusively in eukaryotic genomes.

The conserved region appears to define a new domain in these proteins, which we termed the YT homology (YTH) domain. The YTH domain is usually located in the middle of the protein sequence. The domain shows remarkable conservation across a wide species range, with 14 invariant and 19 highly conserved residues. The proteins present in the alignment do not share significant similarity outside the YTH domain, with the exception of the closely related vertebrate homologues of YT521.

We used SMART [9,10] to search the SMART and PFAM databases for additional known domains in the proteins that contain YTH. The search failed to identify any known domains except for three C–C–C–H-type zinc finger domains in GI:18397519, an *A. thaliana* predicted protein of unknown function. Therefore, we conclude that the YTH domain defines a new protein family.

The putative secondary structure was determined using the PHD program [11]. The domain is predicted to have a mixed $\alpha\beta$-fold, with four α-helices and six β-strands. The conservation pattern follows the predicted secondary structure, with three blocks of conserved sequence separated by loops of variable size. Notable features of the domain are the highly conserved aromatic residues located in the β-sheet.

Most of the proteins identified in the BLAST searches are of plant origin, with 13 distinct sequences coming from a single species (*A. thaliana*). It is unclear whether this protein family is more widespread in plants or whether the observed species distribution is because of bias in the databases.
Predicted function
Biochemically and functionally, YT521-B is involved in the repression of photosynthesis, the AppA protein was identified as being involved in repression of photosynthesis gene expression, AppA protein is involved in the regulation of photosynthesis of photosynthesis, phototrophic proteobacterium, AppA is a multidomain protein from the unicellular phototrophic proteobacterium, Rhodobacter sphaeroides, is present in various proteins, primarily from Bacteria. The BLUF domain is involved in sensing blue-light (and possibly redox) using FAD and is similar to the flavin-binding PAS domains and cryptochromes. The predicted secondary structure reveals that the BLUF domain is a novel FAD-binding fold.

The prototype and identification of the BLUF domain
AppA is a multidomain protein from the unicellular phototrophic proteobacterium Rhodobacter sphaeroides (accession number L42555). The N-terminus of the AppA protein is involved in the regulation of photosynthesis gene expression, although its mechanism of action is not well understood [1–4]. The N-terminus of the AppA protein was identified as being involved in repression of photosynthesis genes by blue-light [1], and Gomelsky and Kaplan showed that the N-terminal ~120 residues bind flavin adenine dinucleotide (FAD) noncovalently with an apparent 1:1 stoichiometry [4]. At the time of publication of Ref. [4], two additional bacterial proteins showing sequence similarity to the N-terminus of AppA had been identified [4]. One of these, YcgF, from Escherichia coli (also known as F403 and b1163; accession number P75990), has been purified and shown to bind FAD [4].

Using the region most conserved between AppA and YcgF (residues 16–108 of AppA), we performed a BLAST search of the nonredundant protein database and a TBLASTN search of the microbial genome database at NCBI, as well as a TBLASTN search of the individual unfinished microbial genomes at the sequencing centers listed in our Acknowledgements. Our searches revealed a variety of uncharacterized proteins containing domains with significant similarity to the N-terminus of AppA. We designated these domains BLUF, for ‘sensors of blue-light using FAD’. Most of these proteins are from two branches of Bacteria, Proteobacteria and Cyanobacteria (Fig. 1). Bacterial genomes contain up to three BLUF domains per genome. No BLUF domains are encoded by the currently available genomes of Archaea. Four BLUF domains are found in Eukarya, all from the unicellular flagellate Euglena gracilis [5] (Fig. 1).

Involvement of the BLUF domain in sensory transduction
To our knowledge, the functions of only two proteins containing BLUF domains have been tested experimentally. Similar to the BLUF domain in R. sphaeroides AppA, the BLUF domains from the recently described photoactivated adenylyl cyclase (PAC) from Euglena gracilis are also involved in the blue-light-dependent control of enzyme activity. Two BLUF domains belong to the α-subunit of the enzyme, PACα, and two to the PACβ subunit [5] (Fig. 1). To gain an insight into the putative role of the BLUF domains in other proteins we analyzed their domain architecture using the SMART [6] and Pfam [7] databases. Based on the deduced domain structures, all

References
10 Letunic, I. et al. (2002) Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res. 30, 242–244

Peter Stoilov
Ilona Rafalska
Stefan Stamm
Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany.

BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms

Mark Gomelsky and Gabriele Klug

A novel FAD-binding domain, BLUF, exemplified by the N-terminus of the AppA protein from Rhodobacter sphaeroides, is present in various proteins, primarily from Bacteria. The BLUF domain is involved in sensing blue-light (and possibly redox) using FAD and is similar to the flavin-binding PAS domains and cryptochromes. The predicted secondary structure reveals that the BLUF domain is a novel FAD-binding fold.

The prototype and identification of the BLUF domain
AppA is a multidomain protein from the bacterium Rhodobacter sphaeroides (accession number L42555). The N-terminus of the AppA protein is involved in the regulation of photosynthesis gene expression, although its mechanism of action is not well understood [1–4]. The N-terminus of the AppA protein was identified as being involved in repression of photosynthesis genes by blue-light [1], and Gomelsky and Kaplan showed that the N-terminal ~120 residues bind flavin adenine dinucleotide (FAD) noncovalently with an apparent 1:1 stoichiometry [4]. At the time of publication of Ref. [4], two additional bacterial proteins showing sequence similarity to the N-terminus of AppA had been identified [4]. One of these, YcgF, from Escherichia coli (also known as F403 and b1163; accession number P75990), has been purified and shown to bind FAD [4].

Using the region most conserved between AppA and YcgF (residues 16–108 of AppA), we performed a BLAST search of the nonredundant protein database and a TBLASTN search of the microbial genome database at NCBI, as well as a TBLASTN search of the individual unfinished microbial genomes at the sequencing centers listed in our Acknowledgements. Our searches revealed a variety of uncharacterized proteins containing domains with significant similarity to the N-terminus of AppA. We designated these domains BLUF, for ‘sensors of blue-light using FAD’. Most of these proteins are from two branches of Bacteria, Proteobacteria and Cyanobacteria (Fig. 1). Bacterial genomes contain up to three BLUF domains per genome. No BLUF domains are encoded by the currently available genomes of Archaea. Four BLUF domains are found in Eukarya, all from the unicellular flagellate Euglena gracilis [5] (Fig. 1).

Involvement of the BLUF domain in sensory transduction
To our knowledge, the functions of only two proteins containing BLUF domains have been tested experimentally. Similar to the BLUF domain in R. sphaeroides AppA, the BLUF domains from the recently described photoactivated adenylyl cyclase (PAC) from Euglena gracilis are also involved in the blue-light-dependent control of enzyme activity. Two BLUF domains belong to the α-subunit of the enzyme, PACα, and two to the PACβ subunit [5] (Fig. 1). To gain an insight into the putative role of the BLUF domains in other proteins we analyzed their domain architecture using the SMART [6] and Pfam [7] databases. Based on the deduced domain structures, all

http://tibs.trends.com 0968-0004/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PI: S0968-0004(02)02181-3